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PREFACE

1991 Interface Proceedings

The 23rd Symposium on the Interface between Computing Science and Statistics was held on April 21-
24, 1991, at the Seattle Sheraton Hotel, Seattle, Washington. The conference theme was "Critical
Applications of Scientific Computing: Biology, Engineering, Medicine, Speech...”. The Symposium was
preceded by a workshop on Computational Molecular Biology.

Bellcore hosted the Symposium with Jon R. Kettenring serving as Program Chair. He assembled an
outstanding program with a committee that selected topics and invited speakers who collectively made
the Symposium a forum for the exchange of exciting new ideas and provided a spectrum of applications
for scientific computing. The members of the program committee were Mary Ellen Bock, Andreas Buja,
Williamm DuMouchel, Nicholas Fisher, Gene Golub, Joe Hill, John McDonald, John Nash, Daryl
Pregibon, Wemer Stuetzle, Michael Tarter, Luke Tierney, Paul Tukey, Paul Young, and myself. John
Nash devoted much time and effort to organizing a special multi-media session comprised of posters,
videos, and demonstrations. Tutorials were presented by Joe Hill, William Eddy and Mark Schervish.

The extremely successful workshop on Computational Molecular Biology was organized by Simon
Tavar€ and featured world-renowned speakers. The workshop served as a focused example of the very
real interface between biology, statistics, and computing science. This theme was evident in the keynote
address, "Opportunities for Statisticians and Computer Scientists in Biology", that was presented by Eric
Lander. Burton Smith transported those that attended the banquet into the computing world of tomorrow
by speaking on "Future Supercomputing”. The talks presented in the workshop as well as the keynote and
banquet addresses are not included in these Proceedings.

Much of the success of a conference can be measured in terms of the number of attendees and the number
of contributed talks, which, for this Symposium, were approximately 400 and 116, respectively.
However, a significant indicator of the lasting enthusiasm that remains with the speakers after a
conference has ended is their commitment to undertake the task of completing the manuscripts that will
comprise the proceedings of that conference. These Proceedings include 78% of the contributed papers
and 65% of the invited papers that were given in Seattle - a more than adequate representation of the
work presented at the Symposium.

Organizing such a conference is an Herculean feat that necessarily requires the cooperation and
dedication of many people. I would like to thank all of those people at Bellcore and the University of

Washington who assisted in a myriad of ways. I would also like to thank Sﬁ' aufman for serving as__
Assistant Editor of these Proceedings. Accesion For Sg
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National Security Agency
Office of Naval Research
Army Research Office
National Science Foundation
National Institutes of Heaith
Air Force Office of Scientific Research
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COOPERATING SOCIETIES AND INSTITUTIONS
American Statistical Association (ASA)
Institute of Mathematical Statistics (IMS)

Society for Industrial and Applied Mathematics (SIAM)
The Biometrics Society (ENAR and WNAR)
Operations Research Society of America (ORSA)
University of Washington
George Mason University

EXHIBITORS
BMDP Statistical Software
SYSTAT, Inc.
DYAD Software
Brooks Cole Publishing
IBM Corp.
SAS Institute Inc.
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Workshop in Computational Molecular Biology

9:00-9:05

9:05-9:20

9:20-10:00

10:00-10:40

10:40-11:10

11:10-11:50

11:50-12:30

12:30-1:50

1:50-2:30

2:30-3:10

3:10-3:40

3:40-4:20

4:20-5:00

S. Tavaré, University of Southern California.
Introduction

D. Galas, Department of Energy.
Overview

F. Cohen, UC San Francisco.
Computational aspects of the protein folding problem

T. Schlick, NYU.
New computational techniques for computing biomolecular
structures and their dynamics

Coffee Break

E. Branscomb, Lawrence Livermore National Labs.
Building physical genome maps by random clone overlap;
a progress assessment of work on human chromosome 19

E.A. Thompson, University of Washington.
Monte Carlo methods for linkage analysis and complex
models

Lunch

E.S. Lander, Whitehead Institute.

Dissecting complex inheritance: statistical and computational

issues

E. Myers, University of Arizona.
Practical and theoretical advances in sequence comparison

Coffee Break

R.J. Roberts, Cold Spring Harbor Labs.
Error detection in DNA sequences

M.S. Waterman, University of Southern California.
Computer methods for locating kinetoplastid cryptogenes




8:00 am. - 9:00 a.m.

9:00 am. - 5:00 p.m.
5:00 p.m. - 8:00 p.m.
5:00 p.m. - 8:00 p.m.

8:00 p.m. - 10:00 p.m.

8:30am.- 945am.

9:45 a.m. - 10:15 a.m.

10:15 a.m. - 12:00 p.m.

12:00 p.m. - 2:00 p.m.

2:00 p.m. - 3:45 p.m.

3:45 p.m. - 4:15p.m.

4:15 p.m. - 6:00 p.m.

8:00 a.m. - 9:45am.

SYMPOSIUM SCHEDULE
Sunday, April 21, 1991

Registration (Pre - Function Area)

Workshop on Computational Molecular Biology (.sp .7en)
Registration (Area in front of Metropolitan Ballroom)
Board of Directors’ Business Meeting and Dinner (Cedar)
Opening Reception (Metropolitan Ballroom)

Monday, April 22, 1991

Keynote Address: "Opportunities for Statisticians and Computer Scientists in Biology™
(Grand Ballroom C)

Break (Grand Ballroom A)

Invited A : Speech and Language (Grand Ballroom B)
Invited B : Scientific Computing Problems in the Aircraft Industry (Metropolitan Ballroom)
Invited C: Uncertainty and Graphical Models (West Ballroom)

Contributed A : Statistical Graphics (Douglas)
Contributed B : Multivariate Analysis (Juniper)
Contributed C : Random Number Generators - Simulation (Madrona)

Lunch

Invited A : Relational Databases: A Tutorial for Statisticians (Grand Ballroom B)
Invited B : Computing Problems in Environmental and Industrial Statistics (West Ballroom)

Contributed A : Software Testing (Douglas)
Contributed B : Computing and Graphics in Applications (Juniper)
Contributed C : Robustness (Madrona)

Break (Grand Ballroom A)

Invited A : Massive Databases (Metropolitan Ballroom)
Invited B : Engineering Applications of Computing-Intensive Methods (West Ballroom)
Invited C : Computational Methods in Spatial Statistics (Grand Ballroom B)

Contributed A : Artificial Intelligence - Belief Functions (Douglas)
Contributed B : Issues in Interactive Graphics (Juniper)
Contributed C : Time Series Prediction - Function Estimation (Madrona)

Tuesday, April 23, 1991

Invited A : Computationally Intensive Methods for Discrete Data (Grand Ballroom C)
Invited B : Data Visualization and Sonification (Grand Ballroom B)

Contributed A : Classification - Density Estimation (Douglas)
Contributed B : Statistical Inference (Juniper)
Contributed C : Genetics - DNA (Madrona)
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9:45 am. - 10:15 am. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A : Realistic Rendering : A Tutorial for Statisticians (Grand Ballroom B)
Invited B : Computer Modeling, Experimental Design and Data Analysis (Grand Ballroom C)

Contributed A : Neural Nets - Biological Systems (Douglas)
Contributed B : Bootstrap and Related Methods (Juniper)
Contributed C : Optimization - Genetic Algorithms (Madrona)

12:00 p.m. - 2:00 p.m. Poster/Video/Demo Session (.sp .7en)

2:00 pm. - 3:45p.m. Invited A : Virtual Interface Technology (Grand Ballroom C)
Invited B : Neural Networks (Grand Ballroom B)
Invited C : Computational Statistical Genetics (East Ballroom)

Contributed A : Tree-Based Methods (Douglas)
Contributed B : Information Retrieval - Record Linkage (Juniper)
Contributed C : Allocation Problems - Sequential Design (Madrona)

3:45 p.m. - 4:15 p.m. Break (Grand Ballroom A)

4:15 p.m. - 6:00 pm. Invited A : Dynamic Statistical Graphics (Grand Ballroom B)
Invited B : Research Opportunities at the Interface of Biology, Statistics and Computing
(Grand Ballroom C)

Contributed A : Integration - Probability Computations (Douglas)
Contributed B : Databases and Information Processing (Juniper)
Contributed C : Problems Relating to Skewness and Kurtosis (Madrona)

6:30 p.m. - 7:30 p.m. Reception (Pre - Function Area)

7:30 p.m. - 10:00 p.m. ' Banquet (Grand Ballroom C)
Banquet Address: "Future Supercomputing”

Wednesday, April 24, 1991

8:00 am. - 9:45am. Invited A : Computational Problems in Biomedical Imaging (Grand Ballroom B)
Invited B : Parallel Computing: A Tutorial for Statisticians (Grand Ballroom C)

Contributed A : Spatial Data - Shape Analysis (Douglas)
Contributed B : Programming Environments (Juniper)
Contributed C : Estimation Problems I (Madrona)

9:45 a.m. - 10:15 am. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A : Multivariate Statistics and Visualization for Labelled Point Data (Grand Ballroom C)
Invited B : Statistical Computing Environments for the 21st Century (Cirrus)
Invited C : Bayesian Computing (Grand Ballroom B)

Contributed A : Image Analysis (Douglas)
Contributed B : Applications Areas (Juniper)
Contributed C : Estimation Problems II (Madrona)

12:00 p.m. End of Conference
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Tree-based Models of Speech and Language

Michael D. Riley

AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

~  We describe here the application of classification and re-

gression trees to some problems in speech and language. We
begin with a brief overview of the technique. We then de-
scribe their application to:

(1) End of sentence detection: The not-so-simple prob-
lem of deciding when a period in text corresponds to the
end of a declarative sentence (and not an abbreviation) is
produced with trees using the Brown corpus as input. The
result is 99.8% correct classification.

(2) Segment duration modelling in speech synthesis: 400
utterances from a single speaker and 4000 utterances from
400 speakers were used to build decision trees that predict
segment durations based on features such as lexical position,
stress, and phonetic context. Over 70% of the durational
variance for the single speaker and over 60% for the multiple
speakers was accounted by these methods.

(3) Phoneme to phone prediction: A lattice of possible
close phonetic transcriptions given a phonemic transcription
(from the orthography and a dictionary) is produced using
the 4000 TIMIT database as input. The most likely phone
corresponding to a phoneme can be predicted 83% correctly.
The five most likely phones can be predicted 99% correctly.

N

1. Introduction

Several applications of statistical tree-based modelling
are described here to problems in speech and language. Clas-
sification and regression trees are well suited to many of the
pattern recognition problems encountered in this area since
they (1) statistically select the most significant features in-
volved, (2) provide “honest” estimates of their performance,
(3) permit both categorical and continuous features to be
considered, and (4) allow human interpretation and explo-
ration of their result. First the method is summarized, then
its application to end-of-sentence detection in text, phonetic
segment duration prediction, and phoneme-to-phone classi-
fication are described. We conclude with some general re-
marks on the strengths and shortcomings of this method.

For other applications to speech and language, see [Lucassen
1984}, [Bahl, et al 1987).
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2. Classification and Regression Trees

An excellent description of the theory and implementa-
tion of tree-based statistical models can be found in Classifi-
cation and Regression Trees [L. Breiman, et al, 1984]. A brief
introduction to these ideas will be provided in this section
for those who may not be familiar with them.

Consider the not-so-simple problem for deciding when a
period in text corresponds to the end of a declarative sen-
tence. This is not as trivial a classification problem as it
may first seem. While a period, by convention, must occur
at the end of a declarative sentence, one can also occur in
abbreviations. Abbreviations can also occur at the end of
a sentence. The tagged Brown corpus [Kucera and Francis
1967] of a million words indicates that about 90% of periods
occur at the end of sentences, 10% at the end of abbrevia-
tions, and about 1/2% in both. The two space rule after an
end stop is often ignored and is never preseat in many text
sources (e.g., the AP news).

Figure 1 shows a classification tree for this problem
trained on the Brown corpus. Let us first see how to use
such a tree for classification. Then we will see how the tree
was generated.

The decision of when a period occurs at the end of a
sentence will depend on factors such as whether the word
following the period is capitalized or if the word containing
the period is a common abbrevation. Suppose we see the
text fragment “Smith. The”. Does the period after “Smith”
occur at the end of a sentence?

Starting at the root node in Figure 1, the first decision
is whether the word after the period, “the” (case ignored
here), is more likely than 27% of the time to occur at the
beginning of a sentence relative to its frequency in text. The
answer is no (estimated from a database described below), so
the left branch is taken. The next split is whether the word
containing the period, “smith”, is more likely than 1% to
occur at the end of a sentence relative to its frequency in text.
The answer is yes, so the right branch is taken. The next
split concerns the case of the word after the period. Since it
is a capitalized word the left split is taken. Finally, the last
question is whether the word containing the period, “Smith”,
is one of several common abbreviation types. Since it is not,
the left branch is taken to a terminal node that classifies this

1
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yes

Apcases.
next:n/a lcase,lcd

913/1038

type:addr.com,grdyp state titie unit

yes no

5137/5283 1331152

Figure 1. Classification tree for end-of-sentence detection.

case as indeed at the end of a declarative sentence.

In the training set, 5137 of the 5283 examples that
reached this node were correctly classified. This tree is a
subtree of a better classifier to be described in the next sec-
tion; this example was pruned for illustrative purposes.

This is an example of a classification tree, since the deci-
sion is to choose one of several classes; in this case, there are
two classes: {end—of —sentence,not —end—of ~sentence}.
In other words, the predicted variable, y, is categorical. Trees
can be created for continuous y also. In this case they are
called regression trees with the terminal nodes labelled with
a real number (or, more generally, a vector).

Classifying with an existing tree is easy; a more difficult
issue is how to generate the tree for a given problem. There
are three basic questions that have to be answered when
generating a tree: (1) what are the splitting rules, (2) what
are the stopping rules, and (3) what prediction is made at
each terminal node?

Let us begin answering these questions by introducing
some notation. Consider that we have N samples of data,
with each sample consisting of M features, zy,22,23,...Zm.
In the end-of-sentence detection example, z; might be the
case of the word following the period, z2 the probability that
the following word begins a sentence, etc. Just as the y (de-
pendent) variable can be continuous or categorical, so can
the z (independent) variables. E.g., word case is categorical
(can not be usefully ordered). while beginning word proba-
bility is continuous.

s

The first question — what stopping rule? — refers to
what split to take at a given node. It has two parts: (a)
what candidates should be considered, and (b) which is the
best choice among candidates for a given node?

A simple choice is to consider splits based on one z vari-
able at a time. If the independent variable being considered
is continuous —oo < 1 < 00, consider splits of the form:

z<k vs. z>k, Vk

In other words, consider all binary cuts of that variable. If
the independent variable is categorical z € {1,2,...,n} = X,
consider splits of form:

z€A vs. z€X-A, VACX.

In other words, consider all binary partitions of that variable.
More sophisticated splitting rules would allow combinations
of a such splits at a given node; e.g., linear combinations of
continuous variables, or boolean combinations of categorical
variables.

A simple choice to decide which of these splits is the
best at a given node is to select the one that minimizes the
estimated classification or prediction error after that split
based on the training set. Since this is done stepwise at each
node, this is not guaranteed to be globally optimal even for
the training set.

In fact, there are cases where this is a bad choice. Con-
sider Figure 2, where two different splits are illustrated for

SPLIT 822

SPUT M

Figure 2. Two different splits with the same misclassifica-
tion rate [after Breiman, et al. 1984).

a classification problem having two classes (No. 1 and No.
2) and 800 samples in the training set (with 400 in each
class). If we label each child node according to the greater
class present there, we see that the two different splits illus-
trated both give 200 samples misclassified. Thus, minimizing
the error gives no preference to either of these splits [after
Breiman, et al. 1984].

The split on the right, however, is better because it cre-




ates at least one very pure node (no misclassification) which
needs no more splitting. At the next split, the other node
can be attacked. In other words, the stepwise optimization
makes creating purer nodes at each step desirable. A simple
way to do this is to minimize the entropy at each node for
categorical y. Minimizing the mean square error is a common
choice for continuous y.

The second question — what stopping rule? — refers
when to declare a node terminal. Too large trees may match
the training data well, but they won’t necessarily perform
well on new test data, since they have overfit the data. Thus;
a procedure is needed to find an “honest-sized™ tree.

Early attempts at this tried to find good stopping rules
based on absolute purity, differential purity from the par-
ent, and other such “local” evaluations. Unfortunately, good
thresholds for these are hard to find and vary from problem
to problem.

A better choice is as follows: (a) grow an over-large tree
with very conservative stopping rules, (b) form a sequence
of subtrees, To,...,T,, ranging from the full tree to just
the root node, (c) estimate an “honest” error rate for each
subtree, and then (d) choose the subtree with the minimum
“honest” error rate.

To form the sequence of subtrees in (b), vary a from 0
{for full tree) to oo (for just the root node) in:

m}n[R(T)+a|T|].
where R(T') is the classification or prediction error for that

subtree and | T | is the number of terminal nodes in the
subtree. This is called the cost-complexity pruning sequence.

To estimate an “honest” error rate in (c), test the sub-
trees on data different from the training data, e.g., grow the
tree on 9/10 of the available data and test on 1/10 of the
data repeating 10 times and averaging. This is often called
cross-validation.

Figure 3 shows misclassification rate vs. tree length for
the end-of-sentence classification problem using a subset of
the input features describe below. The bottom curve shows
misclassification for the training data, which continues to
improve with increasing tree length. The higher curve shows
the cross-validated misclassification rate, which reaches a
minimum with a tree size of about 20 and then rises again
with increasing tree length.

The last question — what prediction is made at a termi-
nal node? -— is easy to answer. If the predicted variable is
categorical, choose the most frequent class among the train-
ing samples at that node (plurality vote). If it is continuous,
choose the mean of the training samples at that node.

The approach described here can be used on quite large
problems. We have grown trees with hundreds of thousands
of samples with a hundred different independent variables.
The (expected) time complexity, in fact, grows only linearly
with the number of input variables (worst case is quadratic).
The one expensive operation is forming all binary partitions
for categorical z's. This increases exponentially with the
number of distinct values the variable can assume.

Tree-Based Models of Speech and Language

End of Declarative Sentence Prediction
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Let us now discuss in detail the applications of these
ideas to some problems in speech and language.

3. End of sentence detection

As the first example, let us look again at the end-of-
sentence detection problem described above. A more com-
prehensive tree was generated using the the following fea-
tures:

e Prob[word with “.” occurs at end of sentence]
o Prob{word after “.” occurs at beginning of sentence]
¢ Length of word with “”
o Length of word after “”
¢ Case of word with “.”: Upper, Lower, Cap, Numbers
o Case of word after “.”: Upper, Lower, Cap, Numbers
o Punctuation after “.” (if any)
¢ Abbreviation class of word with “.”:

— e.g., month name, unit-of-measure, title, ad-

dress name, etc.

The choice of these features was based on what humans
appear to use (at least when constrained to looking at a
few words around the “."). Facts such as “Is the word after
the ‘.’ capitalized?”, “Is the word with the ‘. a common
abbreviation?”, “Is the word after the “." likely found at
the beginning of a sentence?”, etc. can be answered with
these features.

3




4 M.D. Riley

The word probabilities indicated above were computed
from the 25 million words of AP news, a much larger (and in-
dependent) text database. (In fact, these probabilities were
for the beginning and end of paragraphs, since these are ex-
plicitly marked in the AP, while end of sentences, in general,
are not.)

The resulting classification tree correctly identifies
whether a word ending in a “.” is at the end of a declar-
ative sentence in the Brown corpus with 99.8% accuracy.
The majority of the errors are due to difficult cases, e.g. a
sentence that ends with “Mrs.” or begins with a numeral (it
can happen).

4. Segment duration modelling for speech synthesis

400 utterances from a single speaker and 4000 utter-
ances from 400 speakers (the TIMIT database [Fisher, et
al. 1987]) of American English, both which are manually
hand-segmented and phonetically labelled, were used sepa-
rately to build regression trees that predict the duration of
the phonetic segments. Predicting these durations is impor-
tant both in work on speech synthesis and recognition. The
following features were used:

¢ Segment Context:
— Segment to predict
— Segment to left

— Segment to right

o Stress (0, 1, 2)

o Word Frequency: (rel. 25M AP words)

¢ Lexical Position:

— Segment count from start of word
— Segment count from end of word
— Vowel count from start of word
— Vowel count from end of word

e Sentence Position:

— Word count from start of sentencee
— Word count from end of sentencee

o Dialect: N, S, NE, W, SMid, NMid, NYC, Brat

¢ Speaking Rate: (rel. to calibration sentences)

Coding the phonetic context required special considera-
tions since more than 50 phones (using the TIMIT labelling)
can precede a stop in this context. If this were treated as a
single feature, more than 250 binary partitions would have to
be considered for this variable at each node, clearly making
this approach impractical. Chou [1987] proposes one solu-
tion, which is to use k-means clustering to find sub-optimal,
but good paritions in linear complexity.

The solution adopted here is to classify each phone in
terms of 4 features, consonant manner, consonant place,

“vowel manner”, and “vowel place”, each class taking on
about a dozen values. Consonant manner takes on the usual

values as voiced fricative, unvoiced stop, nasal, etc. Conso-
nant manner takes on values such as bilabial, dental, velar,
etc. “Vowel manner” takes on values such as monopthong,
diphthong, glide, liquid, etc. and “vowel place” takes on val-
ues such as front-low, central-mid-high, back-high, etc. All
can take on the value n/a if they do not apply; e.g., when a
vowel is being represented, consonant manner and place are
assigned n/a. In this way, every segment is decomposed into
four multi-valued features that have acceptable complexity
to the classification scheme and that have some phonetic jus-
tification.

The word frequency was included as a continuoulsy
graded “function word” detector and was based on six
months of AP news text. The stress was obtained from a
dictionary (which is easy, but imperfect). The last two fea-
tures were used only for the multi-speaker database. The di-
alect information was coded with the TIMIT database. The
speaking rate is specified as the mean duration of the two
calibration sentences, which were spoken by every speaker.

Over 70% of the durational variance for the single
speaker and over 60% for the multiple speakers were ac-
counted for by these trees. Figure 4 shows durations and
duration residuals for all the segments together. The large
tree sizes here, many hundreds of nodes, make them some
what uninteresting to display.

These trees were used to derive durations for a text-
to-speech synthesizer. This approach offers a promising al-
ternative to heuristically derived duration rules [e.g., Kiatt
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1976}. Since tree building and evaluation is rapid once the
data are collected and the candidate features specified, this
technique can be readily applied to other feature sets and to
other languages.

This approach is very data-intensive, though. Our
databases have tens or hundreds of thousands of segments.
We believe really good duration modelling will involve at
least an order of magnitude more data. This presents not
so much a computational problem, given the efficient algo-
rithms for tree construction available, but a data collection
problem. We believe that automatic transcription [Ljolje
and Riley] may ultimately be the way to proceed.

5. Phoneme-to-phone prediction

The task here is given a phonemic transcription of an
utterance, e.g., based on dictionary lookup, predict the pho-
netic realization produced by a speaker [see also Lucassen,
et. al. 1984; Chou, 1987; Riley 1989, 1991; Chen 1990;
Randolph 1990}. For example, when will 2 T be flapped (as
in American English pronunciation of 'pretty’) or released
(as in phrase-initial T’s). We used the following features to
decide this problem extracted from the TIMIT database:

¢ Phonemic Context:
~— Phoneme to predict
— Three phonemes to left

— Three phonemes to right
o Stress (0, 1, 2)
o Word Frequency: (rel. 25M AP words)
e Dialect: N, S, NE, W, SMid, NMid, NYC, Brat
e Lexical Position:
— Phoneme count from start of word
— Phoneme count from end of - ..:d

¢ Phonetic Context: phone predicted to left

The phonemic context was coded in a seven segment win-
dow centered on the phoneme to realize, again using the 4
feature decomposition described above. The other features
are similar to the duration prediction problem. Ignore the
last feature, for the moment.

The tree for all phonemes grown on these features pre-
dicts on the average 83% of the TIMIT labellings exactly. A
large percentage of the errors are on the precise labelling of
reduced vowels as either IX or AX.

A list of alternative phonetic realizations can also be pro-
duced from the tree, since the relative frequencies of different
phones appearing at a given terminal node can be retained.
Figure 5 shows such a listing for the utterance, Would your
name be Tom? . (We use the TIMITBET phonetic sym-
bols in these examples [Fisher, et al. 1987}). It indicates,
for example, that the D in “would” is most likely uttered
as a DCL JH in this context (59% of the time), followed by
DCL D (28%). On the average five alternatives per phoneme
are sufficient to cover 99% of the possible phonetic realiza-

Tree-Based Models of Speech and Language

Would your name be Tom?

Phoneme Prob Phone

w 979 w 1.7 -

uh 799 ub 9.2 ix 2.2 uw 20 ax
d 59.4 dclijh 28.1 dcl d 94 dcl 31 jb
y 76.1 y 228 -

uh 799 ub 9.2 ix 2.2 uw 2.0 ax
er 526 axr 232 158 er 63 -

n 798 n 18.6 nx 1.5 -

ey 95.7 ey 13 eb 0.8 ih 0.7 ix
m 96.1 m 34 -

b 875 bel b 45 paub 39 bcl 25 b
iy 90.5 iy 49 ix 23 ih 1.2 -

t 929 tcl ¢ 56 dx 06 t

aa 823 aa 74 a0 34 axy 22 ah
m 96.1 m 3.7 -

Figure 5. Phonetic alternatives for “Would your name be
Tom?

tions. This can be used, for example, to greatly constrain the
number of alternatives that must be considered in automatic
segmentation when the orthography is known.

These a priori probabilities, however, do not take into
account the phonetic context, only the phonemic. For ex-
ample, if DCL JH is uttered for the phoneme D in the ex-
ample in Figure 5, then the Y is most likely deleted and not
uttered. However, the overall probability that a Y is uttered
in that phonemic context (averaging both D going to DCL
JH, D, etc.) is greatest. The point is that to incorporate the
fact that “D goes to DCL JH implies Y usually deletes” is
that transition probabilities should be taken into account.

This can be done by including an additional feature for
the phonetic identity of the previous segment. The output
listing then becomes a transition matrix for each phoneme.
The best path through such a lattice can be found by dy-
namic programming.

This, coupled with a dictionary, can also be used for
letter-to-sound rules for a synthesizer (when the entry is
present in the dictionary). The effect of using the TIMIT
database for this purpose is a somewhat folksy sounding syn-
thesizer. Having the D “Would your” uttered as a JH may
be appropriate for fluent English, but it sounds a bit forced
with existing synthesizers. Too much else is wrong., A very
carefully uttered database by a professional speaker would
give better results for this application of the phoneme-to-
phone tree.

6. Discussion

On the whole, we have found classification and regres-
sion trees quite useful in modelling a variety of phenonema
in speech and language. In part, it is their ability to han-
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dle both categorical and continuous inputs and outputs that
makes them attractive to us. The fact that they offer ef-
ficient algorithms, a well-established cross-validation proce-
dure, and a relatively perspicuous representation makes them
more appealing to us than, say, back-propogation neural net-
works for the problems we have described.

The principal difficulty we have found with this and sim-
ilar statistical approaches is that while the trees classify well
most of the time, they occasionally make egregious errors.
When noticed, it is possible to correct these errors by hand
modification of the trees. This is, however, quite tedious.
Further, if new data are used or new input features are tried,
the editing has to be redone (if the error remains).

What would be most appealing to us would be tech-
niques that would allow easy mixing of statistical learning
with hand specification. The user could hand specify what
he is sure of and leave to the statistics to fill in the rest the
best it can, letting us have our cake and eat it too.
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Abstract

- Text analysis is a hot topic, and for good reason.
Text is more available than ever before. Just ten years
ago, the one-million word Brown Corpus (Francis and
Kucera, 1982) was still considered large, but even then,
there were much larger corpora in use such as the 18
million word Birmingham Corpus (Sinclair 1987a,
1987b). These days, there are many places that regu-
larly use samples of text running into the hundreds of
millions of words. And it is very likely that billions of
words will be available very soon.

All of this data provides a great research oppor-
tunity; it easier these days to corpus data much more
effectively than it was in the 1950s, the last time that
empiricism was in fashion. Text analysis focuses on
broad (though possibly superfizizl) coverage of unres-
tricted text, rather than a deep analysis of a restricted
domain. This pragmatic view toward coverage and per
formance distinguishes text analysis from so-called
“intelligent’”’ approaches such as natural language
understanding. This approach has produced a number of
tools such as spelling correctors and part of speech
taggers that work on unrestricted text, with reasonable
accuracy and efficiency. —

1. Recognition Applications

Recognition applications are perhaps the most
obvious applications for large bodies of text. Three
examples of recognition applications will be mentioned
here: (1) Speech Recognition, (2) Optical Character
Recognition (OCR), and (3) Spelling Correction.

Imagine a noisy channel, such as a speech recog-
nition machine that almost hears, an optical character
recognition (OCR) machine that almost reads, or a typist
that almost types. Good text { W;} goes into the chanrel,
and corrupted text { W,} comes out the other end.

W, — Noisy Channel — W,

How can an automatic procedure recover the good input
text, W;, from the corrupted output, W,? In prnciple,
one can recover the most likely input by hypothesizing
all possible input texts, W;, and selecting the input text
with the highest score. Using a classic Bayesian argu-

ment, the score is computed by takirg the product of the
prior probability, Pr(W;), and the channel probability,
Pr(W, | W;). This procedure can be written as:

ARGMAX Pr(W,) Pr(W, | W)

where ARGMAX finds the argument with the maximum
score.

The prior probability, also known as the language
model, is the probability that the W, would be input to
the channel. For example, in the speech recognition
application, it is the probability that someone would
utter W, whereas in the spelling correction application,
it is the probability that someone would type W;. In
practice, the prior is approximated by computing various
statistics over a large sample of text.

The channel probability is the probability that the
channel would transform the word sequence W into the
sequence W,. This is relatively high if W, is the same
as or very ‘‘similar’”’ to W,, where the definition of
“‘similar’’ depends on the application. The channel for
speech recognition, for example, will have a high proba-
bility of mapping words that sound similar (e.g.,
“writer” and ‘“‘rider’” in many American dialects) into
the same output representation. However, in other
applications such as optical character recognition,
“‘writer’’ and ‘‘rider’’ are unlikely to be confused by
the channel because these words are optically quite dis-
tinct. Thus, the channel model clearly depends on the
application as illustrated in the Table 1.

Table 1: Examples of Channel Confusions
in Different Applications

Application | Input Qutput
Speech writer rider
Recognition | here hear
Optical all all (A-one-L)
Character of of
Recognition | form farm
Spelling government  goverment
Correction occurred occured
commercial  commerical
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It is convenient to partition the prior and the chan-
nel in this way, so that the same prior can be used for a
variety of recognition applications including speech
recognition, optical character recognition and spelling
correction. The channel, of course, generally cannot be
ported from one application to another.

2. Spelling Correction

1 have found that spelling correction is a good
application to look at because it is analogous to many
important recognition applications based on a noisy
channel model (such as speech recognition), though
somewhat simpler and therefore possibly more amenable
to detailed statistical analysis. In (Kernighan, Church,
and Gale, 1990), we described a program called correct
which inputs a misspelled word such as absurb, and out-
puts a list of candidate corrections sorted by probability:
absorb (56%0), absurd (4495). The probability scores are
the novel contribution; there are have been many pro-
grams in the past that generated a (long) list of candi-
date corrections, but few have attempted to score the
candidates by a stochastic model of the prior probability
of observing the candidate correction Pr(c) and a chan-
nel probability of observing a particular typo given the
candidate correction Pr(t|¢). Both of these probabili-
ties were estmated from about 50 million words of
Associated Press newswire {(which includes about 15,000
typos which are used to train the channel model).

In evaluating the program, we restricted our atten-
tion to 564 typos that had exactly two candidate correc-
tions. A panel of three judges were given the typo (e.g.,
absurb), the two candidate cormrections (e.g., absorb and
absurd) and a concordance line (e.g., it is absurb and
probably obscene for..), and were asked to select one of
the two corrections (or none-of-the-above). The judges
found this task more difficult than they had anticipated,
and very time consuming (it took each judge about four
hours to grade the 564 examples). In addition, the
judges felt that the task would have been much harder
without the concordance line, suggesting that context
should be incorporated into the program.

Table 2 shows that coriect agrees with the major-
ity of the judges in 87% of the 332 cases of interest.! In
order to help calibrate this result, we compared correct
to three inferior methods: channel-only, prior-only and
chance. Table 2 shows that both the channel-only and
the prior-only models provide a significant contribution
over chance, and that correct, which is a combination of
the two, is significantly better than either in isolation.

! We restricted our altention to those cases where at least two
judges selected one of the two candidate corrections, and they
agreed with each other.

Table 2 also shows that the judges are significantly
better than all of the programs, indicating that there is
room for improvement.

Table 2: Evaluation of Correct

Method Discrimination %

correct 286/329 87 +1.9
Judge 1 271/273 99 £0.5
Judge 2 271/275 99 +0.7
Judge 3 271/281 96 +1.1
channel-only 263/329 80 £2.2
prior-only 247/329 75 +24
chance 172/329 52 +2.8

The program, of course, is not making use of con-
text whereas the human judg’ , did have access to a con-
cordance line. The following examples show that the
task is extremely difficult without context.

Table 3: Hard without Context

Typo Choice 1 Choice 2
actuall actual actually
constuming  consuming  costuming
conviced convicted convinced
confusin confusing confusion

Of course, the task becomes much easier if the context
is provided as demonstrated by the following four con-
cordance lines.

1.  in determining whether the defendant actuall will
die. In the 1985 decision, the...

2.  on Friday night, a show as lavish in constuming
and lighting as those the late Liberace used to...

3.  of the area. ‘“When we're conviced and the Peru-
vians are convinced (the base camp)...

4.  The political situation grew more confusin tod2y,
with an official media report indicating...

Both (Mays et al.,, 1990) and (Church and Gale,
1991a) have found that statistical n-gram models of con-
text can help considerably, although performance is stll
far below that of the human judges. A quick look at the
concordance lines above shows (a) that the relevant con-
textual clues are often fairly close to the typo, and (b)
that there are relatively few cases that make use of
long-distance syntactic dependencies. (a) suggests that
simple n-gram methods might work fairly well in many
cases, and (b) suggests that more complicated ‘‘intelli-
gent”’ parsing methods might not be worth the trouble.

3. The Trigram Model

One of the simpler and more popular priors is the
n-gram model. This model makes the simplifying
assumption that word probabilities depend on only the
previous n-1 words, and that long-distance dependences




which extend beyond this limited window can be
igrored. Jelinek (1985) uses the example shown in
Table 4 to illustrate the power of the trigram model. In
the sentence, We need to resolve all the important tssues
within the next two days, most of the words are
extremely predictable from the trigram context (the
current word plus the previous two). Note that we is the
9* most likely word to begin a sentence in his model;
the words the, this, one, ..., in are more likely to begin a
sentence than we. The word need is found to be the 7%
most likely word to follow we; the words are, will, ...,
do are more likely than need. And so on. Jelinek uses
this example to argue that the rank is usually very small
in comparison to the vocabulary size, which was 20,000
words in this example.

Table 4: Example of Trigrams (Jelinek, 1985)
The This One Two A Three Please In We
are will the would also do need

to

know have understand ... resolve 98

the this these problems ... all

issues problems the

necessary data information ... timportant | 641

_— -3 O

w ©

role thing that ... issues 9

and from in to are with ... within 66
the 1

nezt 1

be two 2

meeting months years ... days 7

Note that function words (e.g., to, the) are gen-
erally more predictable than content words (e.g., resolve,
tmportant). This turns out to be important in speech
recognition because the shorter function words are more
easily confused by the channel model and so it is for-
tunate that they are more predictable from context.

Some of the content words also have relatively
small ranks. Consider, the content word issues, for
example. It turns out that there are relatively few words
that follow the word important (at least, in the sub-
domain of IBM office correspondences). This kind of
collocational (or co-occurrence)? constraint between
words are often not captured very well with a syntactic
parser. Perhaps this is the reason why trigram models
have tended to out-perform so-called ‘‘intelligent”
approaches, when peformance is measured in terms of

2 Halliday (1968, p. 150) was vary interested in the difference
between strong and powerful. Although both words have very
similar syntax and semantics, there do seem to be some contexts
where one word is much more appropriate than the other, eg.,
strong teas vs. powerful druge. The terms collocation, co-
occurrence and lezis have been used to describe these kinds of
constraints on pairs of words.
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4. Word Frequencies and Word Association Norms

The trigram model does a good job of modeling
word frequencies which are very important, as any
psycholinguist knows. Generally speaking, subjects
respond more quickly and more accurately to a high fre-
quency word (e.g., a word that appears relatively often
in a sample of text such as the Brown Corpus) than to
an unusual low frequency word. The word association
effect is similar except that it involves pairs of words.
In general, subjects respond more quickly and more
accurately to a word like doctor if it follows a highly
associated word such as nurse (Meyer, Schvaneveldt and
Ruddy, 1975, p. 98).

Word frequencies are fairly easy to estimate from
a sample of text such as the Brown Corpus. Hanks and
I have argued that word associations should also be
estimated by computing various statistics over large cor
pora (Church and Hanks, 1990). It is more common in
the psycholinguistic literature to find a study like
(Palermo and Jenkins, 1964); they estimated word asso-
ciation norms for 200 words by asking a few thousand
subjects (psychology undergraduates) to write down a
word after each of the words to be measured. Results
were reported in tabular form, indicating which words
were written down, and by how many subjects, factored
by grade level and sex. The word doctor, for example,
is reported on pp. 98-100, to be most often associated
with nurse, followed by sick, health, medicine, hospital,
man, sickness, lawyer, and about 70 more words.

5. Strengths and Weaknesses

The main advantage of the trigram model is that it
has very low entropy, 1.76 bits per character (Brown et
al., 1991). Parsers generally don’t do as well because
they tend to ignore word frequencies. The trigram
model is also able to capture some collocations and
word associations.

The most obvious weakness with the trigram
model is the lack of syntax; the model makes no attempt
to capture long-distance dependencies such as syntactic
agreement, conjunction and wh-movement. In fact, the
lack is syntax is probably not the most serious problem
with the model. The sparse-data problem is extremely
serious since many trigrams do not appear very often in
the training corpus, if at all. In addition, the trngram
model assumes that trigrams have a binomial distribu-
tion, an assumption which is often violated in practice.
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8. Parsers May Not Help Very Much

It has been common practice, especially during
the first Darpa Speech Understanding Project (Klatt,
1977), to try to use a syntactic parser to take advantage
of contextual constraints. Unfortunately, there has not
been very much success. If I tell you that the next word
is going to be a noun, then I really haven’t told you
very much. The following example illustrates the prob-
lem.

In the Optical Character Recognition (OCR) appli-
cation, it is likely that the words form and farm might
be confused by the channel model. Imagine, for exam-
ple, that they were found in one of the following two
contexts:

federal ( ;zm credit
some ( farm] of

form

Most people would have little trouble deciding that farm
is much more likely in the first context and that form is
much more likely in the second context. In fact, trigram
models also have little difficulty with this example.
However, a syntactic parser wouldn’t help very much.
The parser might tell us that the missing word is a noun,
but that wouldn’t help distinguish between form and
farm because they are both nouns. In general, if one
were to compare the relative importance of local context
versus long-distance dependencies, one would almost
certainly find that the local context is much more impor-
tant, at least in terms of predicting the next word.

The linguistic notion of syntax (constraints on
nouns, verbs, subjects, objects, phrases, etc.) was not
intended to be used in a noisy channel model. Chomsky
has always been more interested in linguistic com-
petence (an idealization of syntax) than performance
(deviations that are found in the real world including:
word frequencies, word association norms, collocations,
statistical preferences, memory and computational limi-
tations, etc). It should not be surprising that perfor-
mance issues are important in recognition applications,
and consequently, models that are based too closely on
idealized notions of syntactic competence are likely to
run into trouble when they are tested on real data.

7. Entropy

It is common practice to evaluate a language
model on the basis of its entropy. The standard ascii
code uses 8 bits to represent a character. Obviously,
many of these bits are unnecessary since some letters
are much more common than others. If one were to
take advantage of letter frequencies using a Huffman
code to encode each letter one at a time, then it would
take about 5 bibs 0 code each character. This very sim-

ple code does almost as well as the Unix(TM) compress
program, which uses the Lempel-Ziv algorithm (Welch,
1984).

In general, models based on words achieve much
better compression than models based on characters. A
unigram model (a Huffman code based on word proba-
bilities) requires about 2.1 bits per character (Brown,
personal communication). Note that the unigram model
out-performs Lempel-Ziv by a considerable margin,
indicating that the standard Unix(TM) compress pro-
gram could be improved significantly.

The trigram model achieves even better compres-
sion, 1.76 bits per character (Brown et al., 1991). This
last model is remarkably close to Shannon’s estimate for
the entropy of English. However, it isn’t exactly fair to
compare these estimates since Shannon’s estimate was
based on a 27 character alphabet whereas these other
estimates are based on a 256 character alphabet.
Nevertheless there does seem to be some reason to
believe that the trigramn model is doing quite well, and
that it might be almost as good as native speakers in
predicting the next letter.

Table 5: Entropy of Various Language Models

Model Bits /char
Ascii 8

Huff man code each char 5
Lempel-Ziv (Unix{TM) compress) 4.43
Unigram 2.1
Trigram 1.76
Shannon’s Estimate 1.25

8. Sparse Data ‘‘Fixes"

As mentioned above, the sparse data problem is
probably the most serious weakness with the trigram
model. In fact, there are usually many more parameters
than data points. Let V be the number of types in the
vocabulary and N be the number of tokens in the
corpus. Then there are V3 parameters, which is gen-
erally much much larger than N, the size of the training
set. For example, in the Brown Corpus, there are
V3= 125 x10" trigrams, and only N = 10° tokens
to train from. Obviously, most of the possible trigrams
will not be observed in the training corpus.

One might think that one could fix the sparse data
problem by collecting more data, but ironically V' gen-
erally grows much faster than N. That is, if you collect
a larger corpus (more tokens), then you will also find
more types (vocabulary items). It isn’t exactly clear
how these two function grow, but I believe that the
vocabulary grows almost linearly with corpus size. In
any case, V? grows much much faster than N, so col-
lecting more data is not a solution to the sparse data




problem.

Something has to be done about the sparse data.
Katz (1987) suggests ‘‘backing-off’’ from the trigram
estimates when there isn’t enough data. Basically, the
idea is to replace trigram estimates with a combination
of unigram, bigram and trigram estimates. This is obvi-
ously a good idea.

One can also try to reduce the number of parame-
ters by grouping words into classes (e.g., parts of
speech, synonym sets, etc.) Brown et al. (1990b) sug-
gest building classes with a self-organizing procedure
which joins words based on a mutual information cni-
terion. The criterion has the effect of joining together
words that have similar distributions (e.g., days of the
week, months of the year, etc). Although this particular
suggestion is very intriguing, it probably won’t help too
much with the sparse data problem because it isn’t pos-
sible to determine that two words have a similar distri-
bution unless you have a fair number of examples of
both words. The real problem is what to do with words
that you haven’t seen very often in the training set.
Worse, what do you do with words that you haven’t
seen at all. The critedon for joining words cannot
depend on data that is unavailable.

9. MLE, ADD1, GT and HO

Finally, one can ‘‘adjust’’ frequency counts, espe-
cially when they are small. In principle, n-gram proba-
bilities can be estimated from a large sample of text by
counting the number of occurrences of each n-gram of
interest and dividing by the size of the training sample.
This method, which i1s known as the ‘“‘Maximum Likeli-
hood Estimator,” (MLE) is very simple. However, it is
unsuitable because n-grams which do not occur in the
training sample are assigned zero probability. This is
qualitatively wrong for use as a prior model, because it
would never allow the n-gram, while clearly some of the
unseen rrgrams will occur in other texts. For non-zero
frequencies, the MLE is quantitatively wrong.

Three alternatives will be mentioned here. These
methods all take the observed counts (r) and produce an
adjusted count (r*). The last two methods also make
use of N,, the number of types that occur exactly r
times.

r¥t =7y MLE
N
* p——rt
r (r +1) NS ADD1
N, 11
* — —
r (r +1) N GT
r* = G, /N, HO
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The first method, ADD1 (Jeffreys, 1948), simply
adds one to all of the observed counts and then adjusts
the total appropriately by multiplying by N/(N+S)
where S is the number of types (e.g., V3). This method
is generally a disaster, especially when S is much larger
than N, which is most of the time. In a spelling correc-
tion application, Gale and I have found that this method
produced very misleading estimates and concluded that
estimating the context badly can be worse than not
estimating the context at all {Church and Gale, 1990).

The second method, GT (Good, 1953), depends
only on the modest assumption that ngrams have bino-
mial distributions. Unfortunately, even this modest
assumption turns out to be highly problemotic. Words
and ngrams are like busses in New York City; they are
social animals and like to travel in packs. The word
earthquake, for example, has a very bursty distribution
in the Associated Press (AP} Newswire, depending on
whether or not there has recently been an earthquake.
The word turkey also has a bursty distribution in the
AP, with a burst appearing once a year in late
November. In fact, one can show that the binomial
assumption is often seriously off depending on what
happens to be in the news, among other things.

The last method, HO held-out estimate (Jelinek
and Mercer, 1985), assumes the least, merely that the
training and test corpora are generated by the same pro-
cess. This method splits the text into two halves and
uses the first half to determine /V,, the number of types
that occur r times, and the second half to determine
their total mass C,. r* is then simply set to C,/N,.
For example, to determine 0*, the adjusted count for
ngrams that did not occur in the first half, one would
compute C,, the total count in the second half for
ngrams that did not appear in the first half, and divide
by Nj, the number of ngram types that did not appear in
the first half.

In (Church and Gale, 1991b), we compared the
GT and HO methods for estimating bigram frequencies
in 22 million words of Associated Press Newswire and
found that the GT method was slightly better when the
binomial assumption was appropriate. Tables 6 and 7
show that both methods produce remarkably similar est-
mates for r*.

Table 6: Good-Turing (GT) Estimate
r Nr r*

0  74,671,100,000 0.0000270
1 2,018,046 0.446

2 449,721 1.26

3 188,933 2.24

4 105,668 3.24
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Table 7: Held-Out (HO) Estimate
Nr Cr ™
74671,100,000 2,019,187 0.0000270
2,018,046 903,206 448
449,721 564,153 1.25
188,933 424015 2.24
105,668 341,099 3.23

mWwtw = O =

The agreement of the two methods, though, is
partly due to the fact that we took extraordinary meas-
ures to control for the New York City bus effect. That
i1s, we spit the text into two samples by randomly
assigning each bigram to one of the two samples. This
effectly destroyed any time structure that might have
existed in the two samples. If we had split the text into
two halves sequently by assigning the first six months of
the newswire to the first half and the second six months
to the second half, then we would have observed
significant differences due to the non-binomial nature of
the news.

Table 8 shows that there is considerable agree-
ment when the text is split randomly. The £scores are
possibly somewhat larger than we would like, but they
are really not too bad considering that we are dealing
with extremely infrequent events. The &scores are com-
puted using an estimate of variances which is described
in (Church and Gale, 1991b). Table 9 shows that there
is considerable disagreement if the texts are split
sequentially.

Table 8: Split Text Randomly

r HO GT t

0 000027041 000027026 -7
1 4476 .4457 -29
2 1254 1.260 2.5
3 2244 2.237 -1.5
4 3.228 3.236 1.0
5 421 4.23 1.8
6 523 5.19 -2.8

Table 9: Split Text Sequentially

F HO GT t

0 0.00001684 0.0001132 479.4
1 0.4076 0.5259 113.
2 10721 1.2378 47.0
3 19742 2.2685 378
4 28632 3.1868 26.4
5 3.7982 4.2180 25.8
6 4.7822 5.2221 15.4

In summary, there are quite a number of very
powerful techniques such as GT and HO for estimating
the probability of an n-gram that did not appear very
many times in the training corpus, il at all. These

methods appear to work remarkably well when the
assumptions are met, but unfortunately, there are serious
problems with the assumptions. There has recently been
some interest in adaptive models, models that can take
advantage of recency effects and forgetting effects. If
words were binomially distributed, then the probability
of a word should be independent of how long it has
been since it was last mentioned. In the AP wire, it
appears that the probability increases dramatically when
a word has been mentioned recently, and drops fairly
consistently with the length of time since the last men-
tion.

10. Translation Applications

Section 1 discussed the use of noisy channel
methods in recognition applications. This section will
show how the same methods can be used to address
translation applications such as Machine Translation
(MT). The approach was first suggested by Weaver in
1949 and is currently being revived by Brown et al.
(1990a). If you would like to translate words in a
source language, W, (e.g., French) into words in a target
language, W, (e.g., English), you imagine that the
source words W, were the output of a noisy channel.
The translation task is to find the most likely input to
the noisy channel given the observed outputs.

W, — Nowsy Channel — W,

Viewed in this way, translation is very similar to recog-
nition. In principle, one can recover the most likely
input by hypothesizing all possible target language texts,
W, and selecting the target text with the highest score,
where scores are computed by basically the same for-
mula as above:

ARGMAX Pr(W,) Pr(W, | W)
t

This information theoretic approach to machine
translation is extremely controversial among researchers
in machine translation because it questions many of the
basic assumptions that have dominated the field since
the 1950s when Chomsky (1957) and others pointed out
that statistical n-gram methods are incapable of model-
ing certain syntactic constraints such as agreement over
long distances. Brown et al. (1990a) argue that the sta-
tistical approach is more tractable than it was in the
1950s. Computers are certainly faster than they were
then. In addition, and probably much more importantly,
it is now possible to find large amounts of parallel tezt,
text such as the Canadian parliamentary debates which
are available in multiple languages. Brown et al. esti-
mate Pr(W,) and Pr(W,|W,) by computing various
statistics over these parallel texts. Although the
approach may be deeply flawed for many of the reasons




that were discussed in the (3950s, there is, nevertheless,
a growing community off researchers in corpus-based
linguistics such as (Klavans and Tzoukermann, 1990)
who are becoming convinced that the approach is worth
pursuing because there is a very good chance that it will
produce a number of lexical resources that could be of
great value to their research.

11. Part of Speech Tagging

This description of the machine translation prob-
fem is fairly general and can be applied to quite a
number of transduction problems. Consider, part of
speech tagging, for example. A part of speech tagger
takes an input sequences of words such as The table is
ready. and outputs a sequence of parts of speech such
as: Article Noun Verb Adjective. The problem is non-
trivial because it is well-known that part of speech
depends on context. The word ‘‘table,”’ for example, is
usually a noun, but it can also be a verb in some con-
texts such as: The chatirman will table the motion.

The tagging problem can be viewed as a transla-
tion problem, not unlike machine translation. Imagine
that we have a sequence of parts of speech P that go
into the channel and produce a sequence of words W.
Our job is to ry to determine the hidden parts of speech
P given the observed words W.

P — Noisy Channel - W

As before, in principle, one can hypothesize all possible
inputs to the channel and score them by:

ARGP}\MXPr(P) Pr(W|P)

Again, the parameters in this model are generally
estimated by computing various statistics over large
bodies of text. Both Church (1988) and DeRose (1988)
have used the Tagged Brown Corpus (Francis and
Kucera, 1982) for this purpose, which is particularly
convenient because it comes with parts of speech that
were check by hand. deMarcken (1990} used the
Tagged Lancaster/ Oslo-Bergen Corpus (LOB) which
also comes with parts of speech. Others such as Jelinek
(1985) have used the Baum-Welch Algorithm (Baum,
1972) to estimate the parameters from raw untagged
text.

I have always felt that hand-tagged text produces
more reliable estimates, and recently Menaldo (1990)
performed an experiment which seems to back-up my
suspicion. He estimated the parameters using some
hand-tagged data and then ran the re-estimation pro-
cedure and compared performance before and after re-
estimation. One might have thought that re-estimation
ought to improve performance, but he found just the
opposite. He concludes that one should use as much
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tagged text as possible to estimate the parameters, and
one should resort to re-estimation only when it is not
possible to find a sufficient amount of tagged training
material.

There are, of course, many other ‘‘translation’’
applications that are very analogous to machine transla-
tion and part of speech tagging where one wants to
transduce one tape of symbols into another. In speech
recognition, for example, it is common to use these
noisy-channel methods to translate a sequence of acous-
tic labels (e.g., the output of a filter bank) into a
sequence of phonetic labels (e.g., consonants and
vowels).

12. Conclusions

Quite a number of applications have been men-
tioned in just a few pages: spelling correction, speech
recognition, optical character recognition, text compres-
sion, machine translation and part of speech tagging. Of
course, there are many other applications that should
have been discussed, especially information retneval
(Salton, 1989) and author identification (Mosteller and
Wallace, 1964), but there just wasn’t enough space to
say everything.

All of this work points very strongly to the fact
that 1950-style empiricism is back in fashion. 1 have
been asked to explain why, and I'm not sure that I have
a good answer. Of course, it is possible that the current
interest in empiricism is just a {ad that will soon fade
away. But, I would like to believe that there are good
reasons for the revival. One can point to huge advances
in computational power since the 1950s. But, even
more importantly, the electronic culture has now per-
meated the publishing sector to such an extent that it is
no longer difficult to find hundreds of millions of words
of text in electronic form. And there is promise of bil-
lions of words in the very near future. The availability
of data on such a massive scale has made it possible to
carty out experiments that just weren’t possible back in
the 1950s. Indeed, many of the experiments discussed
in this paper would not have been possible without the
availability of very large corpora.
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Abstract

~X Adaptive resonance theory (ART) neural networks are

being developed for application to the industrial
engineering problem of group technology -- the reuse of
engineering designs. Two and three dimensional
representations of engineering designs are input to ART-
1 neural networks to produce groups or families of
similar parts. These representations, in their basic form,
amount to bit maps of the design, and can become very
large when the design is represented in high resolution.
We describe a "neural database” system under
development. This system demonstrates the feasibility
of training an ART-1 network to first cluster designs
into families, and then to recall the family when
presented a similar design. This application is of large
practical value to industry, making it possible to avoid
duplication of design efforts.

™~
Introduction
Money and time can be saved by manufacturing
companies when engineering designs are reused. This is
particularly true in companies producing large systems,
such as aircraft, that must be customized to varying
layouts. Often the same design is inadvertently
redesigned at great expense. This can happen frequently
in large systems which involve teams of designers. A
new designer will have no knowledge of a previous
designer's work unless the technology exists to retrieve
and compare designs. In industrial engineering, the
study and implementation of such retrieval systems is
referred to as group technology.

Several basic requirements must be met for the practical
implementation of group technology. First, the designs
must exist in, or be convertible to, an electronic
description. Second, an appropriate criterion must be
designed to determine similarity of designs. Third, the
search algorithm must exceed a threshold of performance
on the host computer to provide timely responses for the
user. Fourth, a retrieval system should output the best
few matches for consideration by the human designer.
Fifth and final, the database must be easily maintainable
and updateable. Few traditional database technologies

provide all of these, particularly a criterion for
measuring the similarity of geometrical shapes.

In the following, we will address the general application
of neural networks to the group technology problem,
where the designs are derived from a CAD system. Later
in the paper, we will discuss the results of a specific
neural database architecture that finds similar marker (ie.
decals) designs. Markers are found in the passenger
compartments and service bays of commercial airliners,
and indicate locations of services, warnings, and
restrictions to people who move and work in and around
the aircraft. In this specific system, the data is not
derived from a CAD system, but is acquired from paper
drawings of the markers with the help of a PC based
optical scanner, and is transferred to the network in raster
format.

In the next section, we describe how a specific artificial
neural network can meet all of the requirements of a
group technology implementation. We will assume that
there exists an electronic description of the design
information. First we will introduce the ART-1
algorithm. We will then discuss the process of
information translation into the binary representations
needed for input to the network. A modification of the
simulation is mentioned that makes use of data
compression techniques. Finally, the markers retrieval
system will be described.

ART-1 Algorithm

The adaptive resonance theory (ART) neural network
model was developed by Carpenter and Gmssbergl. The
version of this model that processes binary input
patterns is referred to as ART-1. The ART-1 neural
network model is canonically represented by a coupled
set of ordinary nonlinear differential equationsl. If
appropriate assumptions are made about the relationship
between the learning rates and the dynamical time
constants, this system of equations can be replaced by a
procedural algorilhmz. This "fast learning” mode of
learning requires that the leaming process stabilize each
time before the next input pattern is presented. The
impact of this assumption on both hardware and
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software implementation is large: the computational
steps of the algorithm can now be directly mapped onto
an algorithmic processor. For this model, there is no
need to become embroiled in the implementation issues
of dynamical systems.

The basic functionality of this algorithm is to
autonomously place input patterns into clusters or
families. These patterns are represented as binary
vectors. Clusters are formed and modified during the
training process, often referred to as "self-organizing”
learning. The number of clusters is not preset at the
beginning, but is determined by the underlying structure
of input patterns used during training and by a small set
of network parameters. After training, the network is
used as a "neural database”, being queried by new input
patterns to find the closest family. Again, the input
patterns must be represented as binary vectors.

A characteristic of this self-organizing neural network is
the formation of memory templates or archetypes during
the repeated exposure of the network to the training set.
A template isolates a conjunctive generalization3 of the
attributes representing the member patterns in that
cluster. If the input pattern, denoted 1, is found to be a
member of an existing cluster after a search of neural
memories, then this pattern is added to the membership
list for that cluster, and the template associated with this
cluster is updated to include the features of the new
pattern. The updated template is a conjunction, or an
"and", of the matching template and the newly added
member input vector.

On the other hand, if 1is new to the system's
memories, then a new cluster is formed with I being the
first member. In this case, the new template
representing the new cluster becomes 1. (That is, the
archetype for a group with one member is the member
itself). This process proceeds automatically with no
outside supervision, finding order and structure in the
stream of input patterns. For the learning process to
stabilize, the training set of input patterns is repetitively
presented to the network. In summary: when a new
input vector is presented, it is then either placed into
one of the existing clusters, or classified as a novel
pattern and added to a new cluster.

During the search of the memory templates, the dot
product of each memory template with the input vector
is computed, as are the vector norms of each template
and the input vector. That is,

]
{ 1Ty ), 1<ken, )

{ (T e Tg), 1<ksn; }
where 1 is the current input vector, Ty is the kth
memory template, ng is the current number of

groupings, - is the dot product, and | . | is the Ly norm.
During leaming, the conjunction of the template and the
input vector must be calculated as well. That is,

Tx « AN Ty,
where M is bit-wise "and”. These calculations constitute

a major portion of the processing load of the ART-1
algorithm,

The Neural Network Approach

Healy and Caudell have further developed the
understanding of the logical functionality of the ART-1
network and have developed a methodology for the
design of macrocircuits of ART-1 network modules4.
Through the study of these logical architectures, we have
applied ART-1 to the group technology problem. In
this application, the network is trained on design
representations derived directly from descriptions
generated by such computer aided design (CAD)
packages such as CATIA and CAD-KEY. Two, three,
and higher dimensional descriptions are being used to
represent features of designs.

The CAD system usually stores a "constructive
description” of the part. That is, a list of instructions
that tell a graphics rendering program how to draw a
diagram of the part. The diagram tells the design
engineer how this part fits into the overall system, the
manufacturing engineering how to design the
manufacturing process for the part, and the field service
engineer how to maintain the part in the system. From
this constructive description, a transformed
representation must be produced by a preprocessing
system to become the input for the neural network. The
description of the design may come in other forms,
including raster scanned images as mentioned above. In
this later case, no preprocessing is required.

For a 2D designs, such as a sheet metal floor stiffener in
an aircraft, the simplest transformed representation is a
binary pixel map or sithouette; ones where there is solid
material and zeros where there is none, defined over a
predefined 2D graphical view port. This is shown in
Figure 1a. The view port is a window on 2D space.
The binary pixel map is strung-out or rasterized into a
binary vector by concatenating rows of pixels from the
view port. This vector is subsequently fed to the ART-1
neural network simulator for clustering into families.

Other forms of information may be represented as binary
patterns. For example, Figure 1b illustrates how the
position of fastener holes can be represented in a view
port with the same dimensions of the silhouette, but
with ones in the neighborhood of a hole, and zeros
otherwise. The locations and degree of metal bends can
be represented in a three dimensional "Hough Space”,
where the first two axis code the slope and intercept of
the bend line, while the third axis codes the bend angie.




In this case, each bend line would be represented as a
single point in a 3D space. If the angle of the bend is
not important, then a bend line could be represented
directly in a viewport as with the silhouette. This is
shown in Figure Ic.

(a) (b) ©

Figure 1. Three representations of features of a
design. (a) is the silhouette of the part, (b) is the
location of fastener holes, and (c) is the location of
bend lines. Each of these are converted into linear
binary vectors for input to the neural network.

The limitation of this type of sparce rcpresentation is in
the explosion of the length of the binary input vector.
The resolution of the pixelization determines the overall
length of the binary input vector. The resolution also
determines the accuracy of the object representation, and
if too coarse it will strongly affect the way the network
groups the designs. Even though the bits in the binary
vector can be "packed” into 32 bit integers for storage
and manipulation, when many clusters are formed, the
total size of the vectors will tax the limits of small
engineering workstations.

In our normal simulation of the ART-1 algorithm, the
vectors and templates are in binary form before the dot
products, norms, and conjunctions are calculated. A
practical group technology parts retrieval system might
be expected to require many ART-1 modules running
with many hundreds of memory templates each. A
compounding fact is that the range of engineering
workstations on which the system might possibly be
deployed include relatively low-end PCs. The following
section briefly introduces a modification to the ART-1
algorithm that allows direct operation on data
compressed input vectors and memory icmplates.

A Compressed ART-1 Algorithm

There are significant advantages to applying data
compression techniques to the binary representations
used in this ART-1 system. First of all, there is no
random "noise” in designs, making accurate compression
possible. Second, a bit map of a design will quite
frequently have long strings of 1's and 0's as the material
of the part is transited, producing potentially large data
compression ratios.  Finally, the ncural network
simulation will have fewer actual numbers to process
per part, reducing the exccution times.

In this work, standard run-length encoding is usced. For
an example, see Figure 2. Although other more
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sophisticated techniques are available, it is the low
conversion overhead and basic simplicity of run-length
encoding that makes it ideal for this application. A run-
length algorithm returns a list of integers that represents
the lengths of runs of consecutive 1's and/or O's in the
binary vector. Efficient linear algorithms exist to
compress data into this format. With the assumption
that the starting value of the list is known, the fact that
the 1's and O's alternate allows this list to be stored
without the actual values of the runs.

000000111111111111111110000000011111111111100000
Binary vector

= run of 1s
=run of Os

Figure 2. An example of a short binary vector. The
run-length code C for this string Is {6,17,8,12,5} with
byte compression ratio of 8/5. This ratio assumes that
the uncompressed vector is stored in compact form in
8-bit bytes, and that the maximum length of a single
run is 256. The bar above the vector symbolically
indicates the location of strings of 0's and 1's, and is
used to explain the compressed algorithms later in the
text.

The ART-1 simulation used for this research was
modified to include compressed versions of the vector
operations described above. The input patterns are
compressed before presentation to the network. The
memory templates are created and updated directly in
compressed form. Data compression ratios and
execution times were measured for both compressed and
uncompressed versions of the simulations. In these
experiments, compression ratios of up to 20 were found
using 2-D CAD designs. In addition, speedups of the
ART-1 algorithm of upwards of 100 were measured for
3-D CAD designs. These improvements are important
to the developers and end-users of these neural retrieval
systems because it makes deployment of practical
applications on existing engineering workstations
possible.

Neural Database Architecture

For the group technology applications considered so far
in our research group, a generic system architecture is
emerging. This can be seen in Figure 3. The basic
components are 1) CAD System Interface, 2) Parser, 3)
Representation Generator, 4) Neural Network
macrocircuits, and 5) User Interface.

In a group technology system the lists of parts which
form each clustcr are maintained during training. When
the user queries the system with a new design, that
design is prescnted to the network and the list of parts
which previously grouped in the same cluster are
returned.
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The functionality of the Parser is to extract the salient
information from the CAD System Interface. Typically,
this interface is an ASCII data file containing the
constructive description of the part. It may also be a
raster file of an image. The extracted information might
be a list of lines and arcs defining the border of the part,
the location of fastener holes, or a bit map of the design.
Unfortunately, the structure of the data files usually
depends on the style and consistency of the user of the
CAD program, making multiple searches of the data
necessary. Sometimes information on a substructure of
the part will be distributed in many locations in the
CAD file. The Parser is the only component specific to
the brand of CAD program being used, and must be
redesigned for each new system.

Trtarfs

User

Figure 3. A schematic of the components of a neural
database system for group technology. The User
Interface provides control of the ievel of abstraction of
recall in the network.

The Representation Generator converts and compresses
the information extracted by the Parser into a form
usable by the neural network. This includes operations
such as the generation of the 2D viewports, generating
silhouettes by filling in boundaries, computing the
location of points in Hough spaces, and the compression
of each representation into run-length codes. This
component is independent of the type of CAD program
used in design generation, but will vary depending on
the types of representations required to capture the
significant features that best discriminates the design
families.

The structure of the ART-1 Macrocircuits component is
also dependent on the representations, and will vary
according to requirements of the database users. A
macrocircuit is a collection of neural network modules,
connected together in a larger and more functional
network. These are necessary if a network is to give the
user a range of query options. For example, thc user
may choose to query the database for designs that have
the same general size, represented by a bounding
rectangle or box. After limiting the choices of families
by this step, the uscr may next want to discriminate
according to the the specific shape of the object. The

structure of the macrocircuit strongly effects the range of
functionality provided by the neural database. (See
Figure 6 for a diagram of the macrocircuit used in the
demonstrations system discussed in the following
section.) :

Figure 4.
structure.
ART-1 neural networks to provide "don‘t care" option
to query.

An example of a ART Tree database
Each cube represents a macrocircuit of

Another user requirement might be the ability to vary
the degree of the family discriminators, allowing on-line
specification of the closeness of a match in the search
for similarity. This can be implemented with a
hierarchical abstraction tree of macrocircuit modules, as
shown in Figure 4. Each module in the tree is trained
separately with the input patterns associated only with
that branch cluster, and each module receives the
complete set of representations. The modules at the top
of the tree have the greatest discrimination, while the
one at the bottom has the least. When a query occurs,
the lowest module places the design into one of its
families or clusters. Families at this level represent the
most general abstraction of the possible set of designs
stored in the system. When a winning cluster is selected
at the first level, the module up the branch of the tree
associated with this group is activated. This module
then places the design into one of it's clusters, and the
process repeats. The user selects the level of abstraction
at retrieval time according to the current requirements.

An Application to Marker Retrieval

As an illustration of the types of systems currently
under development, more detail will be given on the
marker design retrieval system. Figure 5 gives two
markers that are similar in size and textual content, but
differ in the graphical information. It is possible that
only one of these need be saved. Often new markers are
needlessly designed because no retrieval system exists to
aid the designer. The markers designs are produced and
stored on sheets of paper bound in volumes,
complicating electronic access.

For this demonstration, approximately 50 markers were
digitized on a Macintosh optical scanner to capture the




graphical shape. These images were then converted to
raster file bit maps for input to the neural network. In
addition, the cut-out die size and textual content of the
marker were recorded with the image. Figure 6 gives the
details of how sets of ART-1 modules are connected to
implement the database system.

The detailed structure of this macrocircuit evolves during
the learning process, where a training set of marker
designs are repetitively presented to the network. The
die size and textual information are used to form
families. When a new size/text family forms, an ART-1
module is created to cluster the graphics associated with
this family into subfamilies of similar shapes. In Figure
6, the shape representation is considered last by the
highest ART-1 module.

One advantage of this sort of hierarchical structure is
that it could be easily incorporated into a traditional
database system. The categorization that occurs before
presenting the graphical images to the neural network
could be performed by querying an existing database.
Thus, any attributes of the markers that have been

NO SMOKING
IN LAVATORY

Figure §.
graphical information.
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entered into a database could be used prior to graphical
grouping.

This demonstration system mentioned above is
implemented in the C language on Sun SPARC
workstations. Training for this small system takes less
than ten minutes, and retrieval time for a new design is
less than a second. The ART Tree structure has not
been implemented for this application. Figure 7 shows
a screen-dump of a trained network.

A neural network grouping system for airplane markers
could be used in a number of ways. The existing
markers could be grouped and then the groups examined
by a human to locate and purge duplicate markers. This
would save money in maintenance. Also, such a system
could be used for group technology to return the closest
existing markers t0 a new one being designed. This
would help avoid the future proliferation of duplicate
markers. Finally, additions to traditional databases could
be constructed which would graphically group the
markers returned to the user in response to a query.
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Figure 6. The macrocircuit of ART-1 modules that implements the markers design retrieval system.
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Figure 7. A screen dump from a Sun SPARCI simulation of the sheet metal floor stiffener retrieval
system. The three representations of shape, holes, and bends appear in viewports across the tcp of the
image. The set of silhouettes in the upper middle of the figure are the memory templates for the shape
ART-1 module. The lower set of rectangular windows show the resuits of the holes and bends modules
for each shape cluster.




Conclusions

Artificial neural networks have been applied to design
retrieval. ART-1 networks are used to adaptively group
together similar engineering or graphical designs. The
information used to group is coded into a binary
representations which, in their basic form, amounts to
bit maps of design descriptors. We have used this
technology to build neural databases for the retrieval of
two and three dimensional engineering designs. We
have discussed in detail a feasibility level system that
learns to group airliner markers into families, and then
to recall the family when presented a similar marker.
The input to these networks may be generated directly
from CAD designs of the parts or other sources of object
features.

An addition to the algorithmic form of ART-1 was
introduced that allows it to operate directly on run-length
encoded vectors, and to generate compressed memory
templates. When compared to the regular uncompressed
algorithm or real engineering designs, the performance
of this compressed algorithm demonstrated a significant
savings in storage of the input vector and the memory
templates. A surprising result was the size of the speed
up in execution of the simulation on larger input
vectors. Issues of object scale, orientation, and
reflection have not been discussed here, although they
have been dealt with in the working systems. The code
for a system that groups aircraft floor stiffener sheet
metal parts has been transferred to a PC based
engineering workstation for beta testing. The application
of neural networks to group technology is of large
practical value to industry, by making it possible to
avoid duplication of design efforts and save many down
stream costs.
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. Abstract

This paper discuses multiple Bayesian networks repre-
sentation paradigms for encoding, asymmetric indepen-
dence assertions. We offer three contributions: (1) an in-
ference mechanism that makes explicit use of asymmetric
independence to speed up computations, (2) a simplified
definition of similarity networks and extensions of their
theory, and (3) a generalized representation scheme that
encodes more types of asymmetric independence asser-
tions than do similarity networks. .

Introduction

Traditional probabilistic approaches to diagnosis, classi-
fication, and pattern recognition face a critical choice:
either specify precise relationships between all interact-
ing variables or make uniform independence assumptions
throughout. The first choice is computationally infeasi-
ble except in very small domains, while the second, which
is rarely justified, often yields inadequate conclusions.

Bayesian networks offer a compromise between the two
extremes by encoding independence when possible and
dependence when necessary. They allow a wide spectrum
of independence assertions to be considered by the model
builder so that a practical balance can be established be-
tween computational needs and adequacy of conclusions.

Although Bayesian networks considerably extend tra-
ditional approaches, they are still not expressive enough
to encode every piece of information that might re-
duce computations. The most obvious omissions are
asymmetric independence assertions stating that vari-
ables are independent for some but not necessarily for
all of their values. Such asymmetric assertions cannot
be represented naturally in a Bayesian network. Sev-
eral researchers observed this limitation, however, until
recently no effort was made to remove it.

Similarity network paradigm is the first major effort
towards the r -.resentation of asymmetric independence
[Heckerman, 1 /90]. Contingent influence diagrams is an

*This paper is reprinted from the p.oceedings of the 7th
Uncertainty in Artificial Intelligence conference, Los Angeles,
California.
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alternative approach [Fung and Shachter, 1991]. Both
schemes employ asymmetric independence to ease the
elicitation and improve the quality of probabilistic mod-
els.

This article offers three contributions: (1} an infer-
ence mechanism that makes explicit use of asymmetric
independence to speed up computations, {2} a simplified
definition of similarity networks and extensions of their
theory, and (3) a generalized representation scheme that
encodes more types of asymmetric independence asser-
tions than do similarity networks.

These contributions address problems of knowledge
representation, inference, and knowledge acquisition. In
particular, Section 2 describes Bayesian multinets and
how to use them for inference, Section 3 describes knowl-
edge acquisition using similarity networks and how to
convert them to Bayesian multinets, Section 4 extends
these representation schemes to the case where hypothe-
ses are not mutually exclusive and section 5 summarizes
the results. We assume the reader is familiar with the
definition and usage of Bayesian networks. For details
consult [Pearl, 1988].

Representation and Inference
Bayesian Multinets

The following example demonstrates the problem of rep-
resenting asymmetric independence by Bayesian net-
works:

A guard of a secured building expects three types of
persons to approach the building’s entrance: work-
ers in the building, approved visitors, and spies. As
a person approaches the building, the guard notes
its gender and whether or not the person wears a
badge. Spies are mostly men. Spies always wear
badges in order to fool the guard. Visitors don’t
wear badges because they don’t have one. Female-
workers tend to wear badges more often than do
male-workers. The task of the guard is to identify
the type of person approaching the building.

A Bayesian network that represents this story is shown
in Figure 1. Variable h in the figure represents the cor-
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rect identification. It has three values w, v, and s re-
spectively denoting worker, visitor, and spy. Variables g
and b are binary variables representing, respectively, the
person’s gender and whether or not the person wears a
badge. The links from & to g and from h to b reflect the
fact that both gender and badge-wearing are clues for
correct identification, and the link from g to b encodes
the relationship between gender and badge-wearing.

Unfortunately, the topology of this network hides the
fact that, independent of gender, spies always wear
badges and visitors never do. The network does not
show that gender and badge-wearing are conditionally
independent given the person is a spy or a visitor. A
link between ¢ and b is drawn merely because gender
and badge-wearing are related variables when the per-
son is a worker.

Figure 1: A Bayesian network for the secured-building
example.

We can more adequately represent this story using two
Bayesian networks shown in Figure 2. The first net-
work represents the cases where the person approaching
the entrance is either a spy or a visitor. In these cases,
badge-wearing depends merely on the type of person ap-
proaching, not on its gender. Consequently, nodes b and
g are shown to be conditionally independent (node k
blocks the path between them). The links from h to
b and from A to g in this network reflect the fact that
badges and gender are relevant clues for distinguishing
between spies and visitors. The second network repre-
sents the hypothesis that the person is a worker, in which
case gender and badge-wearing are related as shown.

Spy/ Visitor Worker

"

Figure 2: A Bayesian multinet representation of the
secured-building story.

Figure 2 is a better representation than Figure 1 be-
cause it shows the dependence of badge-wearing on gen-
der only in context in which such a relationship exists,
namely, for workers. Moreover, the former represen-
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tation requires 11 parameters while the representation
of Figure 2 requires only 9. This gain, due to asym-
metric independence, could be substantially larger for
real-sized problems because the number of parameters
needed grows exponentially in the number of variables,
whereas the overhead of representing multiple networks
grows only linearly.

We call the representation scheme of figure 2, a
Bayesian multinet.

Definition Let {u;...u,} be a finite set of variables
each having a finite set of values, P be a probability dis-
tribution having the Cartesian product of these sets of
values as its sample space, and h be a distinguished vari-
able among the u;’s that represents a mutually-exclusive
and exhaustive set of hypotheses. Let Aj,..., Ax be a
partition of the values of A. A directed acyclic graph
D; is called a local network of P (associated with A;)
if it is a Bayesian network of P given that one of the
hypotheses in A; holds, i.e., D; is a Bayesian network of
P(uy...u,|A;). The set of k local networks is called a
Bayesian multinet of P.!

In the secured-building example of Figure 2,
{{spy, visitor}, {worker}} is a partition of the values of
the hypothesis node h, one local network is a Bayesian
network of P(h,b, g| worker) and the other local network
is a Bayesian network of P(h,b, g| {spy, visitor}). 2

The fundamental idea of multinets is that of condition-
ing; each local network represents a distinct situation
conditioned that hypotheses are restricted to a speci-
fied subset. Savings in computations and space occur
because, as a result of conditioning, asymmetric inde-
pendence assertions are encoded in the topology of the
local networks. In the example above, conditional inde-
pendence between gender and badge-wearing is encoded
as a result of conditioning on h.

Notably, conditioning may also destroy independence
relationships rather then create them [Pearl, 1988).
However, if the distinguished variable is a root node (i.e.,
a node with no incoming links), conditioning on its val-
ues never decreases and often increases the number of in-
dependence relationships, resulting in a more expressive
graphical representation. Other situations are addressed
below where the hypothesis variable is not a root node
or where more than one node represents hypotheses.

Representational and Computational
Advantages
The vanishing dependence between gender and badge-

wearing is an example of an hypothesis-specific indepen-
dence because it is manifest only when conditioning on

'A Bayesian multinet roughly corresponds to an
hypothesis-specific similarity network as defined in Hecker-
man’s dissertation (1990, page 76).

2The conditioning set {spy, visstor} is a short hand nota-
tion for saying that k draws itz values from this set, namely,
either h = spy or h = wvisitor.
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specific hypotheses, that is, for spies and visitors, but
not for workers. The following variation of the secured-
building example demonstrates an additional type of
asymmetric independence that can be represented by
Bayesian multinets as well.

The guard of the secured building now expects four
types of persons to approach the building’s en-
trance: executives, regular workers, approved vis-
itors, and spies. The guard notes gender, badge-
wearing, and whether or not the person arrives in
a limousine {l). We assume that only executives
arrive in limousines and that male and female ex-
ecutives wear badges just as do regular workers (to
serve as role models).

This story is represented by the two local networks
shown in Figure 3. One network represents a situation
where either a spy or a visitor approaches the building,
and the other network represents a situation where either
a worker or an executive approaches the building. The
link from A to [ in the latter network reflects the fact that
arriving in limousines is a relevant clue for distinguishing
between workers and executives. The absence of this
link in the former network reflects the fact that it is not
relevant for distinguishing between spies and visitors.

The vanishing dependence between gender and the hy-
pothesis variable h when h is restricted to a subset of
hypotheses {worker, ezecutive} is an example of subset
independence. Similarly, badge-wearing is independent
of h when restricted to {worker, ezecutive}, and arriv-
ing in limousines is independent of 2 when restricted to
{spy, visitor}. 8

Subset independence is a source of considerable com-
putational savings. For example, in lymph-node pathol-
ogy less than 20% of the potential morphological findings
are relevant for distinguishing any given pair of disease
hypotheses (among over 60 diseases) [Heckerman, 1990].

Worker /Executive

Sp
O O (O O

Figure 3: A Bayesian multinet representation of the aug-
mented secured-building story.

Below we demonstrate these computational savings
using the simple secured-building example; more sav-
ings are obtained in real domains such as lymph-node
pathology.

SHeckerman coined the terms subset independence and
hypothesis-specific independence in his dissertation.

Suppose the guard sees a male (g) wearing a badge (b)
approaches the building and suppose the guard doesn’t
notice whether or not'the person arrives in a limousine.
A computation of the posterior probability of each possi-
ble identification {ezecutive, worker, visitor, spy) based
on the Bayesian network of Figure 1 simply yields the
chaining rufe:

P(hig, b) = K - P(h) - P(g|h) - P(blg, ). (1)

where K is the normalizing constant.
Using the representation of Figure 3, however, the fol-
lowing more efficient computations are done instead:

P(spylg, b) = K - P(spy) - P(g|spy) - P(blspy)  (2)
P(visitorlg, b) = K - P(visitor) - P(g|visitor):

P(bjvisitor) (3)
P(worker|g, b) = K - P(worker) - P(g|worker)-

P(bj|g, worker) (4)
P(g, b|ezecutive) = P(g, blworker). (5)

Equations 2 and 3 take advantage of an hypothesis-
specific independence assertion, namely, that ¢ and b
are conditionally independent given, respectively, that
h = spy and h = wisitor. Equation 5 uses a subset inde-
pendence assertion, namely, that b and g are independent
of h restricted to {worker, ezecutive}.

More generally, calculating the posterior probability of
each hypothesis based on a set of observations ey, ..., e/
is done in two steps. First, for each hypothesis h;, the
probability P(ey, ..., emnlh;) is computed via standard al-
gorithms such as Spiegelhalter and Lauritzen’s (88) or
Pearl’s (88). Second, these results are combined via
Bayes’ rule:

P(h,-(el...em) = K- p(hi)P(el...eklh,'). (6)

Notably, the computation of P(e; ... ex|h;) in the first
step uses the local networks as done in Eqs. (2) through